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Abstract
We review recent experimental and theoretical studies on two-dimensional (2D)
melting in the presence of a one-dimensional (1D) periodic potential. It is
demonstrated that a colloidal suspension which is exposed to the interference
pattern of two overlapping laser beams show a phase behaviour being totally
different from that of 2D systems on homogeneous substrates. This is attributed
to the role of particle fluctuations which in the presence of sufficiently strong
periodic external potentials enhance particle interactions and thus promote
crystallization.

1. Introduction

The physics of melting and freezing of two-dimensional (2D) systems is rather different from
their counterparts in three dimensions (3D). While the change from the solid to the liquid
phase in 3D is characterized by a first order transition, almost 30 years ago it was suggested
that the character of the melting ransitions in 2D is fundamentally different. According to
the ideas of Kosterlitz–Thouless
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situation leads to a—compared to homogeneous substrates—very different phase behaviour
which is due to the interplay of interactions between the adsorbate particles among themselves
and with the under laying periodic substrate [5]. While some of these aspects have been
already investigated on an atomic scale—with krypton films on graphite probably being the
most thoroughly studied system (for a review see e.g. [6])—systematic measurements with
atomic systems turn out to be rather difficult since the shape and form of the substrate potential
can be only varied within narrow limits.

In the context of fundamental studies of 2D melting, colloidal suspensions, i.e. Brownian
particles which are suspended in a liquid, have been proven to be convenient model systems
which provide ideal conditions for experimental and theoretical studies [7–10]. Since the
pair interaction potential of colloidal particles can be varied over a large range, this allows
their interaction to be changed from essentially hard sphere behaviour to e.g. a long-range
dipole-dipole interaction. Accordingly, such systems have been intensively investigated as
model systems for 2D melting during the last decades and confirmed the 2D melting scenario
as described above [8, 10]. While there exist numerous studies on 2D melting on homogenous
substrates, only little is known about 2D melting on surfaces with periodic potentials, although
the latter is more relevant to the situation experienced by an atomic adsorbate on a crystalline
surface. In this paper we summarize some of our recent experimental and theoretical work
on the behaviour of colloidal particles in the presence of external potentials. Here we will
address the simple case of an one-dimensional (1D) periodic potential which is shown to alter
the phase behaviour of the 2D colloidal suspension significantly.

2. Experimental studies

In our experiments we used aqueous suspensions of polystyrene spheres with 3µm diameter
and a polydispersity of 4% (Interfacial Dynamics Corp.), which are confined between two
horizontally aligned parallel glass surfaces with a spacing of 20µm. Due to sulfate-terminated
surface groups which partially dissociate off when in contact with water, the suspended particles
are negatively charged and experience a partially screened electrostatic repulsion which can
be described by [11, 12]

�(r) = (Z∗e)2

4πεε0

(
exp(κR)

1 + κR

)2 exp(−κr)

r
. (1)

Here Z∗e is the renormalized charge of the particles which has been roughly determined to
be Z∗ ≈ 20000 [13], ε is the dielectric constant of water, κ is the inverse Debye screening
length and r is the distance between particle centres. The experiments are performed in highly-
deionized water using a closed circuit, in which the suspension is pumped through a vessel of
ion exchange resin [14]. From the measurement of the ionic conductivity, the Debye screening
length is estimated to be on the order of 400 nm.

A convenient way to create spatially modulated potentials for colloidal suspensions has
been suggested by Chowdhury and coworkers who demonstrated that a 2D layer of colloidal
spheres can be influenced by an optical interference pattern. Since the depth and periodicity of
such a light potential can be easily controlled in situ (in contrast to e.g. photolithographically
formed substrate potentials), this method allows the systematic investigation of the influence
of substrate potentials on the phase behaviour of 2D systems.

In order to generate 1D periodic potentials as they will be used in the present study, we
first divided the beam of a frequency-doubled Nd:YVO4 laser (λ = 532 nm, Pmax = 2 W)
into two beams of equal intensity and directed them from above in a slightly-tilted manner
into the sample where an interference pattern is produced (figure 1). Since the PS particles
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are polarized in the presence of the light field, the interference pattern leads to a periodic, 1D
potential V (x) which acts on the particles [15]

V (x) = −V0(1 + cos(2πx/d)). (2)

HereV0 = (6n2
WPσ

3
0 (n

2−1)/(n2 +2)cr2
0 )[j1(πσ0/d)d/2πσ0] is the amplitude of the potential

with P being the laser power, c the velocity of light in vacuum, n the ratio of the refractive
indices of polystyrene nP and water nW , σ0 the colloidal particle diameter, j1 the first-order
spherical Bessel function, r0 the waist radius of the gaussian laser beam, and d the line spacing
of the interference pattern. The validity of equation (2) has been experimentally confirmed
by using highly diluted colloidal suspensions. From their equilibrium distribution function
the light potential has been found to agree with the above formula within 10% [16]. Since
in addition to equation (2) the intensity profile shows a gaussian envelope, we used only the
central region of the interference pattern for the data evaluation to guarantee V0 to be constant
within about 5% . Because the two laser beams are directed almost perpendicular onto the
sample the particles in addition experience a vertical light pressure which pushes them towards
the negatively-charged bottom silica plate of our cell [17]. This vertical force is estimated to
be in the range of pN and largely reduces vertical fluctuations of the particles, thus confining
the system effectively to two dimensions. In order to keep this light pressure independent of
V0, one of the laser beams was directed through a λ/2-plate to rotate the polarization of one
beam with respect to the other. Accordingly, the variation of V0 could be achieved by adjusting
the angle of the λ/2-plate while keeping the total laser intensity constant. The sample was in
addition illuminated with white light from the top and imaged with a microscope objective
onto a CCD camera chip connected to a computer for further analysis. The intense Nd:YVO4

laser light was blocked with an optical filter [18].
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Figure 1. Schematic view of the optical setup. An incident laser beam is first splitted into two
beams of equal intensity by means of the beamsplitters (BS1, BS2) and the prisms (P1, P2) and
then overlapped inside the sample plane with the lens (L) and a dichroic mirror (DM). The position
of P2 can be varied to change the beam spacing s and thus the fringe spacing d of the resulting
interference pattern. The amplitude of the intensity modulation is controlled by the position of a
λ/2-plate which is inserted in one of the laser beams. The sample is illuminated with white light
from above to allow imaging of the particles onto a CCD camera. The camera is protected with a
filter to avoid exposure to the high intensity of the incoming laser beam.
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In our experiments we have chosen the colloid density to be somewhat below that required
for spontaneous crystallization. In the absence of the periodic light potential the particles thus
form an isotropic liquid, with mean particle distance a= 9.6 µm (figures 2(a) and (b)). Upon
exposing the sample to a weak horizontally aligned interference pattern with V0 = 0.6kBT
the isotropy of the system is broken and the particles prefer to align in horizontal strings
corresponding to the symmetry of the underlying interference fringes (figures 2(c) and (d)).
The exponential decay of the pair correlation function along those lines clearly indicates
that in this direction this phase is liquid. Since perpendicular to the laser fringes (vertical
direction in figure 2.) the particle density is modulated, this phase is termed a modulated
liquid [19]. When the light potential is increased to V0 = 2.1kBT we observe a transition
into a crystalline structure with quasi-long-range order (figures 2(e) and (f)). The triangular
symmetry is due to the fact that the distance between the interference lines is chosen to be
commensurate, i.e. d = acos 30◦; otherwise a distorted lattice is obtained. This remarkable
transition which has been reported for the first time by Chowdhury and coworkers in 1985 [20]
is readily understood when taking into account that even in the liquid phase the particles prefer
to arrange in local hexagons. While for sufficiently small V0 these hexagons are orientated
randomly, with increasing V0 they become more and more aligned to the light pattern until
they form a crystal [21, 15].

What would happen if one increases the potential strength V0? Obviously this would
further reduce particle fluctuations perpendicular to the interference fringes and one might
anticipate—in the spirit of the Lindemann criterion (see below)—that the crystalline phase
becomes even more pronounced. Experimentally, however, we observe just the opposite. As
can be seen in figures 2(g) and (h), which were obtained for V0 = 6.3kBT , the triangular order
disappears and the crystal remelts (light-induced melting, LIM) back into a modulated liquid.

To understand the origin of this effect, it is helpful to realize that even in the crystalline
phase the particles perform considerable fluctuations up to 30% around their equilibrium
positions (see figure 2(f)). The fluctuations perpendicular to the laser potential, in the
presence of the strongly repulsive interparticle interactions, are essential for the registration
of neighbouring lines and thus for the occurrence of quasi-long-range order. In that sense,
fluctuations stabilize the crystalline phase (figure 3(a)). Consequently, when those fluctuations
are reduced by increasing V0, the coupling between adjacent lines is weakened, and the crystal
remelts to a modulated liquid (figure 3(b)). The scenario described here, is strikingly different
from that usually observed in 2D systems on homogeneous substrates and emphasizes the
importance of the interaction of the particles with the external (light) potential which must—in
addition to particle–particle interactions—be taken into account. As demonstrated in the above
experiments, it is the counter-play between these two interactions which is responsible for the
observed phase behaviour.

To stress this important point in some more detail, in addition to the above measurements,
where the particle number density was held constant, we also measured the phase behaviour for
different particle number densities as a function of the light potential amplitude V0. Particular
attention was paid to the fact that the periodicity of the laser potential d was adjusted properly
to obtain a hexagonal crystal, i.e. d =

√
3

2 a, otherwise a distorted lattice is observed. The
d-values were varied approximately between 6 µm and 8 µm. The result of more than 100
single measurements are shown in figure 4 in the (κa)−1 versusV0 plane, with a being the mean
distance of next-neighbour particles which has been measured for each particle concentration
in the absence of the laser field [16]. As can be seen, the value of (κa)−1 where the transition
towards the crystal occurs decreases at small laser intensities as a function of V0. This is the
characteristic feature of LIF. For larger values of V0, however, the separation line between the
crystalline and the modulated liquid region is shifted back to higher (κa)−1-values and starts to
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(a)
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Figure 2. Left column: Typical configurational snapshots of colloidal particles inside a 2D cell,
additionally exposed to an optical interference pattern which is aligned horizontally. Right column:
from single video pictures the particle centres have been determined by a computer program
to calculate the averaged single particle density ρ(x, y) which is plotted here in perspectivic
view. To obtain sufficient statistics the data were averaged over 200 pictures, with time delays
of 3s each. The data correspond to zero light potential (a,b) and three nonzero potential values
(c, d)0.6kBT , (e, f )2.1kBT and (g, h)6.3kBT .
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A B 

Figure 3. Schematic illustration of how fluctuations affect the particle interaction in neighbouring
minima of the laser potential (dashed lines). The vertical and horizontal arrows denote the strength
of the particle interactions perpendicular and along the laser potential. (a) In the crystalline
phase particle fluctuations perpendicular to the interference pattern contribute to the registration of
adjacent lines. (b) At higher light intensities those particle fluctuations are reduced by the laser field
and thus lead to a reduced coupling of adjacent lines which then leads to the reentrant modulated
liquid phase.

saturate at the highest values which could be obtained in our setup. It is this up bending which
gives rise to the LIM phenomenon. Only if (κa)−1 is in a relatively small range between 0.045
and 0.048, with increasing V0 one observes the following sequence of states: isotropic liquid–
modulated liquid–crystal–modulated liquid and supports the sequence observed in figure 2. In
addition our data clearly show, that reentrant melting from the crystalline state to a modulated
liquid is only observed if the crystalline state had been formed by LIF and underlines the
unique properties of the light-induced crystalline state.
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Figure 4. Experimentally determined phase diagram as a function of (κa)−1 against V0/kT .
The open symbols denote the modulated liquid and the closed symbols the crystalline phase,
respectively. For clarity error bars are only plotted for a few data points. The solid line is a guide
to the eye.
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3. Theoretical results

There are several reasons why phase transitions in two-dimensional systems are interesting
from a theoretical point of view. As the dimensionality of space is reduced, the fluctuations
around mean-field behaviour become more pronounced. These fluctuations act to disorder the
system and therefore to lower the critical temperature. Eventually they may drive it to zero.
These observations are summarized in the Hohenberg–Mermin–Wagner theorem stating that
there is no long-range order in a two-dimensional systems with a continuous symmetry group.
But, order does not seem to be destroyed altogether. There is still a low-temperature phase with
quasi-long-range order, characterized by a power law decay of the order parameter correlation
function. This phase is distinct from a high temperature phase with short-range order where
correlation functions decay exponentially at large distances. A remarkable result of condensed
matter theory is that the excitations driving the transition are not long-wavelength fluctuations
in the phase of the order parameter but topological defects [1, 22, 23]. Building on these ideas a
defect mediated melting theory for 2D melting has been formulated [1–4] with the remarkable
result that melting proceeds via a successive unbinding of dislocations and disclinations with
a hexatic phase intervening between the solid and liquid phase [2, 3]. In the following we will
review how this 2D melting theory is modified by the presence of a 1D periodic potential.

3.1. Order parameters and Landau’s mean-field theory

We start our discussion with a mean-field analysis. Despite the fact that mean-field theories
are unreliable in low-dimensional systems it is still instructive to review its predictions for two-
dimensional melting in the presence of a periodic potential. The basic idea of Landau’s mean-
field theory is to write down an expansion of the free energy in terms of the order parameters
of the system under consideration. In a 2D solid order is characterized by a translational order
parameter, ρ �G(�r) = ei �G·�r , and an orientational order parameter, ψ6(�r) = e6iθ(�r), where �G is a
reciprocal lattice vector, �r is the position of a colloidal particle, and θ(�r) is the ‘bond’ angle
between two colloidal particles relative to some reference axis. We chose a geometry where
�G1 is commensurate with the laser potential. Then the form of the coarse-grained free energy
functional in terms of the order parameter fields is dictated by symmetry [24, 20]

F = −2V0ρ �G1
+

1

2
rT
∑

�G

∣∣ρ �G
∣∣2 + wT

∑
�G1+ �G2+ �G3=0

ρ �G1
ρ �G2

ρ �G3

+uT

(∑
�G

∣∣ρ �G
∣∣2)2

+ u′
T

∑
�G

∣∣ρ �G
∣∣4 + · · · +

1

2
r6|ψ6|2 + u6|ψ6|4 + · · ·

+γ
∑

�G

∣∣ρ �G
∣∣2[ψ6

(
Gx − iGy

)6
+ ψ∗

6

(
Gx + iGy

)6
]
. (3)

The summations run over all wave vectors �Gi lying on the ring of reciprocal lattice vectors
closest to the origin. At high temperature both parameters rT and r6 are positive and will
eventually change sign when temperature is lowered. In the absence of a laser potential there
are two possible scenarios. If rT changes sign while r6 is still positive, then because of the cubic
term one expects a first-order liquid–solid transition [25]. On the other hand, if r6 changes
sign before rT mean-field theory predicts a continuous transition into an orientationally ordered
hexatic phase with a subsequent hexatic to solid transition. One of the most important effects of
the laser potential is that (due to the linear coupling between the amplitude of the laser potential
V0 and the Fourier density mode) a finite value for 〈ρ �G1

〉 is induced at all temperatures, even
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in the liquid phase. This has two important consequences. First, it leads to an effective field
conjugate to the bond orientational order through the coupling γ in equation (3). Second,
it converts Landau’s cubic term into a simple upward shift in the melting temperature for
the only remaining critical mode + = ρ �G2

− ρ �G3
. Then the resulting Landau expansion

contains only even powers of this complex order parameter +, which therefore generically
orders via a continuous transition in the XY universality class. Hence, within the mean-field
analysis of Chowdhury et al [20], one expects to reach a tricritical point upon increasing
the laser potential, beyond which the melting transition becomes continuous. These results
have been confirmed by density functional theory [26]. Unfortunately, the applicability of
mean-field-like theories to problems with continuous symmetry in 2D is limited since these
theories drastically underestimate the effect of fluctuations. These fluctuations can suppress
the transition temperature so far below its mean-field value that order parameter amplitude
fluctuations except in the form of topological defects play no role. In this case a two-stage
melting process mediated by the unbinding of dislocations [1–4, 24, 25] and disclinations
[2, 3, 25] provides an alternative scenario which we will discuss next.

3.2. Dislocation unbinding theory

3.2.1. Review of 2D melting on a smooth substrate Before discussing the effect of a periodic
potential on melting in 2D colloidal systems let us briefly summarize the key results for 2D
melting on a smooth substrate. At sufficiently long scales and to quadratic order in the elastic
strain

uij = 1

2

(
∂iuj + ∂jui

)
(4)

associated with the colloidal displacement field �u(x, y), a 2D hexagonal crystal is well
described by isotropic continuum elastic theory

F = 1

2

∫
d2r

(
2µu2

ij + λu2
kk

)
. (5)

The Lame coefficients µ and λ, with µ the usual shear modulus, are the only two elastic
constants necessary to completely characterize the elastic energy associated with small
deformations of an unperturbed 2D hexagonal solid. As observed by Landau and Peierls in the
1930’s thermal excitation of long wavelength phonon modes destroy long-range translational
order and lead to a logarithmic divergence in the correlation function of the displacement field.
As a consequence there is only quasi-long-range translational order characterized by a power
law decay in the correlation function for the translational order parameter〈

ρ �G(�r)ρ �G(�0)
〉
∼ r−η̄G (6)

where the temperature dependent exponent

η̄G = kBT

∣∣∣ �G2
∣∣∣ 3µ + λ

4πµ (2µ + λ)
(7)

is inversely related to the stiffness constants of the phonon modes. Unlike the mean square
displacement, the expectation value of

〈
θ2
〉
remains finite [27] and consequently there is long-

range bond orientational order at low temperatures.
There are two different types of (topological) defects associated with the continuum

elastic theory of a solid: dislocations and disclinations. Dislocations can be generated by
removing a half-row of colloids from an otherwise perfect lattice (see figure 5). They are quite
effective in destroying translational order but are less disruptive of orientational correlations.
The topological "charge" characterizing a dislocation is its Burgers vector �b, defined as the
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a

a’
d

(a) a
d

(b)

Figure 5. Triangular lattice with lattice constant a subject to a periodic potential (maxima indicated
by dashed lines) for two different relative orientations: (A) pAd = a′

A with a′
A = √

3a/2 and
pA = 2, and (B) pBd = a′

B with a′
B = a/2 and pB = 1. Also shown are low energy dislocations

with Burgers vector �b parallel to the corrugation of the potential.

amount of a closed contour integral of the displacement field around a dislocation fails to close∮
d�u = �b. One of the most remarkable results of 2D melting theory is that unbinding of

dislocation pairs drives a transition from a solid not directly to a liquid but to a hexatic phase
[3], where translational order is short-range but there is still quasi-long-range orientational
order. A transition from the hexatic to a liquid phase occurs only at a higher temperature
where dissociation of disclination pairs destroys orientational correlations.

3.2.2. Induced hexatic order Since many potential applications of 2D melting theory are to
films adsorbed onto a crystalline substrate, it is important to ask how the melting scenario
described above is modified by the effect of commensurate or incommensurate periodic
potentials. Because of the ‘substrate’ tunability the colloidal system described above allows
us to address this question in a rather unique way. The most obvious effect of the periodic
substrate is that it explicitly breaks continuous 2D rotational symmetry down to rotations by
180◦. In other words, the favoured orientations for the ‘bonds’ between the colloidal particles
is parallel to the troughs of the laser potential and the hexatic order parameter is finite at all
temperatures. This situation is analogous to a ferromagnet in a magnetic field, where the
qualitative distinction between paramagnetic and ferromagnetic phase in erased in an external
magnetic field, with both phases displaying a finite induced magnetization. Here, the laser
potential eliminates the continuous transition from an isotropic liquid to a hexatic liquid phase.
The hexatic order parameter ψ6 at low laser intensities show power law behaviour

ψ6 ∝ V
1/δ6

0 (8)

with 1/δ6 = 6 in the liquid phase and

1/δ6 = 6η6

4 − η6
(9)

in the hexatic phase, where η6 is the exponent describing the algebraic decay of bond
orientational order in the absence of the laser-induced periodic potential.

3.2.3. The locked floating solid The periodic potential also changes the nature of the low
temperature phase. While the particles are pinned transversely to the troughs of the periodic
potential, executing only massive optical phonon-like excitations in that direction, they are
able to slide freely along the potential minima with acoustic phonon excitations within the
troughs. Because of these highly anisotropic properties this phase has been called ‘locked
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floating solid’ (LFS) [28]. Upon integrating out the optical phonon-like uy-modes the LFS
can be described in terms of an elastic free energy for the acoustic ux-modes

FLFS = 1

2

∫
d2r

{
Keff (∂xux)

2 + µeff

(
∂yux

)2
}

(10)

with effective elastic constants Keff and µeff for compression and shear, respectively. The
structure function of a LFS is quite unusual. It displays a set of delta-function Bragg peaks
located at the multiples of the laser potential reciprocal lattice vectors �K = (2π/d)�ey ,
which coexist with other spontaneously induced Bragg peak along the y-axis and quasi-
Bragg peaks for Gx �= 0. The latter show algebraic singularities in the static structure factor,

S(�q) ∼ |�q − �G|ηG−2
with

ηG = kBTG
2
x

1

2π
√
Keff µeff

. (11)

A sketch of the structure factor for two typical relative orientations of the triangular lattice
with respect to the periodic laser potential is shown in figure 6.

3.2.4. How does the locked floating solid melt? With increasing temperature the locked
floating solid will eventually melt. What is the nature of this melting transition, if not preempted
(as it can always be) by a first-order transition? What are the relevant topological defects driving
the transition? What is the nature of the phase above the melting transition? The answer to these

Τm

Liquid

Τ

U0

Τh

(a)

LFS

qy

q
x

Τm

Liquid

Τ

U0

Τh

q x

(b)

LFS

qy

Figure 6. Schematic p = 1 phase diagram for orientations A and B. Insets: schematic structure
functions in the various phases. The x’s indicate delta-function Bragg peaks and circles algebraic
peaks. Th indicates the transition temperature from the hexatic to the liquid phase at zero potential
strength.
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Τ
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a) 1<p<pc

qy
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Figure 7. Schematic phase diagram for a primary commensurate orientation with commensurability
parameter in the range 1 < p < pc (the case p = 2 is shown here). Thin lines indicate continuous
phase transitions. The thick line between the LFS and modulated liquid phase is most likely a
first-order phase boundary. Insets: schematic structure functions. As in figure 6, the x’s indicate
delta-function Bragg peaks and the shaded circles algebraic peaks.

questions depends on two important ingredients: (i) the orientation of the triangular colloidal
lattice relative to the laser potential, which selects a set of Bragg planes that run parallel to the
troughs; and (ii) the commensurability ratio of the spacing a′ between these Bragg planes to
the period d of the laser potential, defined byp = a′/d. In figure 5, two particularly interesting
orientations, denoted A and B, of the colloidal crystal and laser potential are shown. A key
observation is that only dislocations with a Burgers vector parallel to the troughs have the
usual logarithmically divergent energy. In orientation A, four of the six fundamental Burgers
vectors are disfavoured by the potential, which would require that they be attached to a semi-
infinite discommensuration string. The effect of the periodic potential is even more dramatic
in orientation B. Here all six fundamental Burgers vectors are disfavoured. The lowest energy
Burgers vector parallel to the laser minima has length

√
3a. Hence (if experimentally feasible)

tuning of the relative orientation and the commensurability ratio allows to select the Burgers
vector of the dislocations which drive the melting transition. Unlike conventional 2D melting
[3], the exponent of the power law Bragg peaks is universal at the melting transition, and is
given by

η∗
G = ( �G�b/4π)2 (12)

where �b is the smallest allowed Burgers vector in the trough direction. For the primary
orientation A, illustrated in figure 5(a), with b = a, the exponent characterizing the algebraic
order in the off-axis peaks (see figure 6(a)) closest to the qy-axis is η∗

G = 1/4; for the next
row of peaks with Gx = 4π/a one finds η∗

G = 1, consistent with the algebraic decay observed
experimentally [19]. For orientation B, with b = √

3a, the six quasi-Bragg peaks closest to the
origin have different power laws; peaks on the x-axis have η∗

G = 1, whereas the four off-axis
peaks have η∗

G = 1/4.

3.2.5. Topology of the phase diagram The topology of the phase diagram depends on the
magnitude of the commensurability parameter p. For p = 1, which is the case studied in
the experiments described above, the phase diagram contains only two thermodynamically
distinct phases. A dislocation unbinding transition in the universality class of the anisotropic
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Figure 8. Schematic phase diagram for a primary commensurate orientation with commensurability
parameter p > pc (p = 4 is shown here). As in figure 6 the thick line indicates a first-order
transition. Insets: schematic structure functions. As in figure 6, the x’s indicate delta-function
Bragg peaks and the shaded circles algebraic peaks.

XY model melts the LFS to a modulated liquid phase. The most striking feature of this
phase transition is the existence of a region in the phase diagram where one finds re-entrant
melting. We will discuss below, why such a fascinating re-entrance phenomenon generically
emerges in the limit of a short Debye screening length. With increasing commensurability
ratio additional intermediate phases between the LFS and modulated liquid become possible.
For 1 < p < pc, where pc depends on the relative orientation between the triangular solid
and the periodic potential, the dislocation unbinding melts the LFS to a locked smectic phase
(LSm). In the LSm phase distinguishes itself from the modulated liquid phase by a broken
discrete translational symmetry: only one out of p possible troughs is preferentially occupied
by the colloidal particles. As illustrated in figure 7, the structure factor of the LSm phase
displays spontaneously induced Bragg peaks at multiples of �K/p in addition to the Bragg
peaks at multiples of �K , directly induced by the laser interference fringes. The transition
from the LSm to the modulated liquid phase is in the p-state clock model universality class.
A direct transition from the LFS to the modulated liquid phase is still possible. Because
it requires a simultaneous loss of a continuous and a discrete symmetry it is most likely a
first-order transition. Above a critical commensurability ratio pc the complexity of the phase
diagram further increases (figure 8). The key feature is that now the laser potential becomes
irrelevant before the LFS melts. One finds a roughening-like phase transition from the LFS to
a floating solid (FS). The melting of the FS to a modulated liquid is in the same universality
class as 2D melting on a smooth substrate. Similar to the phase transition from the LFS to
the LSm, the melting of the FS phase into the floating smectic (FSm) phase is mediated by
the unbinding of dislocation pairs with Burgers vectors parallel to the minima of the periodic
potential. An additional subtlety results from the presence of the massless spectator phonon
modes transverse to the troughs of the laser potential [29]. It will be interesting to explore all
of these theoretical predictions using colloidal systems.

3.2.6. Re-entrance The most surprising feature of the phase diagram is re-entrant melting
as a function of the potential strength (see figure 6). At small laser intensities the freezing
temperature increases as a function of V0. This is intuitively understood by taking into account
a suppression of thermal fluctuations which reduces the entropy of the liquid phase and hence
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makes freezing into a lattice less costly. Actually, it turns out that the shape of the phase
boundary at small potential strength shows a universal cusp [29]. On the other hand, for
large V0, one finds theoretically that the melting temperature (for short-ranged interaction
between the colloidal particles) generically decreases with increasing laser intensity. This
can be understood with a heuristic argument as described above, but also more quantitatively
[28]. Note that the effective shear modulus µeff entering the expression for the melting
temperature Tm = �b2

√
Keff µeff /8π is determined by a screened Coulomb interaction

V (r) = V0 exp[−κr] between colloidal particles in neighbouring troughs. In order to find
an effective shear modulus for the ux-modes, one needs to integrate out the massive uy-modes
corresponding to displacements perpendicular to the troughs of the laser potential. Upon
assuming that the dominant effect comes from the shear modulus and simply averaging the
potential over the massive uy degrees of freedom one finds µeff ∝ 〈

e−κ|rn=1−rn|〉
uy

, where rn

and rn+1 are positions of nearest-neighbour colloidal particles belonging to the n and n + 1
laser potential troughs. This gives to lowest harmonic order in the fluctuations [29]

µeff (V0) ∝ 〈
e−κa−κ[uy(n+1)−uy(n)]

〉 ∝ e−κaeκ
2〈u2

y〉 ≈ µeff (∞)econst.×kBT /V0 . (13)

When combined with the expression for the melting temperature, this reduction in the effective
shear modulus implies that the melting temperature increases with decreasing potential strength
[28]

Tm(V0) = Tm(∞)

{
1 +

5((κa)2 − 31)

64π2

(
1 +

13

3κa

)
kBTm(∞)

V0

}
(14)

thus implying re-entrant melting for a band of temperatures as a function of potential strength.
Note that theory also predicts that re-entrant melting should be absent below a critical value
κa ≈ 5.6 of the Debye screening length.

3.3. Monte Carlo simulation

Recent Monte-Carlo simulation studies of melting in the presence of a 1D periodic external
potential have explored the phase diagram in the parameter space of V0/kBT and κa with
particle density and temperature fixed [30, 31, 26]. The results seem to be inconclusive:
although earlier simulations [30] claimed to have found a tricritical point at intermediate
laser intensities and re-entrance, recent studies from the same laboratory refute these results
[31]. These difficulties are perhaps unsurprising, given that even much larger scale simulations
have, so far, failed to completely resolve the nature of 2D melting, even without a periodic
external potential [32]. One might question whether such simulations are in equilibrium with
respect to dislocation climb (or even glide).

Dislocation-unbinding melting theory predicts that(
κ∞
m − κ0

m

)
a ≈ 2 ln

(
1.3κ

∞
m
/
κ0
m

)
> 0 (15)

which in the dilute limit reduces to
(
κ∞
m − κ0

m

)
a ≈ 0.52. In particular, we find κ∞

m > κ0
m

in agreement with experiment [16]. Simulations [30] report the opposite result. More recent
simulations from the same group [31] seem to refute these earlier results and find in agreement
with our theory κ∞

m > κ0
m. Their numerical value for

(
κ∞
m − κ0

m

)
a ≈ 1.32 is, however, roughly

two times larger than our asymptotic prediction of 0.52. These deviations should, however, not
be taken too seriously, since equation (13) neglects finite renormalization of elastic constants
by dislocation dipoles and nonlinear elastic effects, our prediction is an estimate, only accurate
up to unknown factors of order 1. It should be mentioned that very recent MC simulations from
Strepp et al [33] obtain a value which is in the same order of magnitude. The corresponding
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value of equation (13) taken from our experimental results in figure 4 is considerably larger
than that predicted here, but this difference might be due to the finiteness of our system or the
fact that in the experiment the periodic, 1D potential has an gaussian envelope due to the beam
profiles of the two interfering laser beams. Attempts are in progress to study the effect of the
phase behaviour as a function of the system size.

Next we discuss re-entrance in the V0/kBT −κma phase diagram. There is a critical value
for κa ≈ 5.6 below which (κa)−1 is a monotonically decreasing function of the potential
strength. If both κ0

ma and κ∞
m a are larger than the critical value 5.6, theory predicts re-entrant

behaviour. This re-entrant behaviour is consistent with the experimental results described
above. It is also similar to what one finds in simulations [30] at small values of the potential
strength. However, there are significant differences. First of all, the type of transition is
very different. Whereas we discuss a continuous dislocation mediated melting transition,
simulations appear to find a first-order transition. Second, as discussed above, the simulations
show κ∞

m < κ0
m which is opposite to what our theory predicts. In more recent simulations [31]

κm is found to increase monotonically with potential strength with no sign for re-entrance.
It should be mentioned that the phase behaviour discussed in the paper is not restricted to

charged stabilized colloidal suspensions but should be also observed for other pair potentials.
Very recently, it has been demonstrated by Strepp et al that for hard discs in an external periodic
1D potential a very similar phase diagram is observed [34]. Calculations [35] along similar
lines as described in [28, 29] show that re-entrance is expected even for a dipolar interaction
between the colloidal particles, i.e. a 1/r3 pair potential. In general however, one would expect
that the re-entrance behaviour becomes less pronounced with increasing range of interaction
of the pair potential.

4. Fluctuations and the Lindemann criterion

We have pointed out that under certain conditions particle fluctuations are actually essential for
the occurrence of crystalline order and that melting occurs upon reducing those fluctuations.
This seems to contradict the phenomenological melting criterion which was suggested from
Lindemann in 1910 [36]. According to his idea, a solid melts when the thermally driven
fluctuations of atoms become so strong that neighbouring particles collide with each other.
Although this view of atomic collisions turned out to be not strictly correct, both experimental
and theoretical investigations confirm Lindemann’s basic idea and predict melting to occur
when the root mean square displacements of the particles exceed about 10% of the lattice
constant [37, 38]. This melting criterion was long thought to be inapplicable to 2D systems due
to the lack of true long-range-order which leads to a divergence of the mean square displacement
of the particles in the thermodynamic limit. With small modifications, however, the Lindemann
melting criterion can be applied to 2D systems [39]. Accordingly, the intuitive idea that particle
fluctuations destroy positional order and thus lead to melting is well established in physics.
Therefore, at first glance it may sound odd that fluctuations in certain systems should enhance
positional order, i.e. promote crystallization. Our apparently paradoxical result is caused by
the fact that in the presence of the 1D light potential, the system cannot contract perpendicular
to the potential lines when the lateral fluctuation amplitude of the particles is decreased. This,
however, is different when considering e.g. an atomic adsorbate on a crystalline surface at
constant pressure. In this situation, decreasing the fluctuation strength, e.g. by lowering the
temperature, would (in case of an e.g. Lennard-Jones-like interaction potential) lead to a
thermal contraction of the crystalline substrate and thus to a smaller mean distance a of the
adsorbed particles. As a result one would not follow a horizontal path in the phase diagram as
we did in figure 4 but rather cross it with a line with a positive slope. Owing to the fact that



Phase behaviour of colloids in confining geometry R335

re-entrance is only observed in a relatively small range of (κa)−1-values, however, would lead
to the absence of the re-entrant melting phenomenon.

5. Summary

In summary, our results demonstrate how the 2D-melting scenario proposed by KTHNY is
affected by the presence of a periodic, 1D potential. We have shown that, as the light potential
is gradually increased, a 2D liquid first crystallizes in predominantly hexagonal order and then
melts again to a modulated liquid. We attributed this rather unusual re-entrance behaviour to
the fact that lateral particle fluctuations in the present system contribute to the registration of
adjacent lines. Accordingly, when those fluctuations are suppressed by increasing the light
field, a remelting of the crystal is observed which demonstrates the ambivalent role of particle
fluctuations in such systems.
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